If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11^2+x^2=20^2
We move all terms to the left:
11^2+x^2-(20^2)=0
We add all the numbers together, and all the variables
x^2-279=0
a = 1; b = 0; c = -279;
Δ = b2-4ac
Δ = 02-4·1·(-279)
Δ = 1116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1116}=\sqrt{36*31}=\sqrt{36}*\sqrt{31}=6\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{31}}{2*1}=\frac{0-6\sqrt{31}}{2} =-\frac{6\sqrt{31}}{2} =-3\sqrt{31} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{31}}{2*1}=\frac{0+6\sqrt{31}}{2} =\frac{6\sqrt{31}}{2} =3\sqrt{31} $
| q/2-2q=40 | | -39+k=8(2+7k) | | (z-3)+(3z-1)=180 | | -4(5s-6)+21(s-9)=-153-2 | | -8(-6v+6)=-36-6v | | 20=d/4+17 | | -a=6(1-7a)-6 | | 15^2+x^2=26^2 | | 2(2w+2)=6 | | 3x-15+5x+2x+5=180 | | -12-4x=-4(3+x) | | 3/4(2x-1)=5 | | -2x-x=3 | | 5(-2x+8)=8x+32 | | 5=4j+5 | | X-1+x+6=17 | | 4b+11=b-7 | | 5^2+x^2=8^2 | | x-7=19+2x | | 3(2f+2)=6 | | 72^2+65^2=x^2 | | -1-3(3b+7)=-85 | | 2x-14+x=16 | | 208q-11)=-12 | | 8^2+b^2=17^2 | | 1/6n=93 | | 4(8v+1)=164 | | 6x+8x3-4=38 | | x+14=5x-2x+14=5x+2= | | 5-2x-3=3x+2 | | -8+3n=-17 | | (4c-8)=(5c-19) |